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ABSTRACT The high-salinity water f lowing out of the
Mediterranean Sea descends to mid depths in the density-
stratified ocean, continues as a narrow jet along the Iberian
continental slope, and intermittently detaches large-scale
eddies (called ‘‘Meddies’’). This process is important because
it maintains the relatively high mean salinity of a major water
mass (the ‘‘Mediterranean Intermediate Water’’) in the North
Atlantic. Our simplified model of this jet consists of a moving
layer with intermediate density r2 sandwiched between mo-
tionless layers of density r1 < r2 and r3 > r2. The inshore
(anticyclonic) portion of the midlevel jet (in the ‘‘r2-water’’)
rests on an inclined bottom (the continental slope), whereas
the (cyclonic) offshore portion rests on the density interface
of the stagnant deep (r3) layer. An inviscid, steady, and
finite-amplitude longwave theory is used to show that if the
cross-stream topographic slope increases gradually in the
downstream direction, then the ‘‘r2-jet’’ is def lected off the
bottom slope and onto the upper density interface of the r3
layer. The computed magnitude of this separation effect is
such as to produce an essentially free jet which is removed
from the stabilizing inf luence of the continental topography. It
is therefore conjectured that time-dependent effects (ba-
roclinic instability) will produce further amplification, caus-
ing an eddy to detach seaward from the branch of the jet
remaining on the slope.

Section 1. Introduction

The lateral separation from the continental slope of large-scale
currents such as the Gulf Stream and the Mediterranean
Outflow Current is an important oceanographic process, but
there are significant differences between these two types. After
the Gulf Stream emerges from the Straits of Florida the
inshore (cyclonic half) of the jet extends from the bottom of
the continental slope to the top of the ocean. As the jet
progresses northward the water lying over the continental
slope is gradually displaced off the slope and onto isopycnal
surfaces. The separation from the continental slope is virtually
complete at Cape Hatteras, North Carolina, at which point the
Gulf Stream is essentially a free jet removed from restraining
topography. While many large-scale factors enter into the
dynamics of the Gulf Stream, it has been suggested (1) that the
separation of the inshore half is an inertial process (conser-
vation of potential vorticity), and one that can be explained by
the net downstream increase of the cross-stream bottom slope,
such as is observed (2) upstream of Cape Hatteras. The
dynamical significance of the formation of such a free jet lies
in the fact that it is much more unstable than a boundary jet
that is under the restraining influence of sloping bottom

topography; consequently wave amplitudes increase greatly
downstream of Cape Hatteras, as is commonly observed in
infrared satellite images of ocean temperatures. In midocean
these waves in the Gulf Stream become so large that they
‘‘pinch off’’ from the main jet and deposit their thermal
anomalies on either side, thereby initiating the process by
which the heat transport of the semipermanent oceanic gyres
is mixed in the surrounding water mass.

The Mediterranean Outflow Jet (Fig. 1), on the other hand,
is a subsurface current flowing along the Iberian continental
slope, and it will be modeled by a highly simplified vertical
section (Fig. 2) consisting of only three density layers. Espe-
cially noteworthy in Fig. 1 is the fact that the jet following the
topographic isobaths along the Iberian coast intermittently
detaches eddies seaward (3), while the remaining portion of
the jet continues along the slope until its temperature and
salinity anomalies are entirely ‘‘diluted’’ in this manner.

Eddies form in a similar way elsewhere in the world ocean.
D’Asaro (4, 5) reported a smaller-sized anticyclone at midlev-
els in the Arctic. Although it formed earlier than when
observed and more remotely, the formation was attributed to
the flow around a sharp coastal corner. This classical kind of
boundary layer separation effect also occurs in laboratory
experiments (6, 7) when a rotating density current flows along
a vertical wall towards a sharp corner; if this makes an obtuse
angle greater than 45° 1 180°, then an eddy detaches from the
boundary. The sharp corner, however, plays an inordinately
large role, since separation does not occur at a continuously
curved vertical wall if the radius of curvature exceeds the value
of the typical current divided by the Coriolis parameter f (7).
Since such a large radius of curvature is not typical of the
relevant Iberian isobaths, it is probable that the downstream
variation in cross-stream bottom slope is a more important
topographic factor in the formation of meddies. Bower et al. (3)
have measured the paths of floats placed in the stream (Fig.
1C), and although these are highly variable in space and time
these authors indicate that some aspect of the topography is a
controlling factor.

The role of topographic slope for eddy formation and
separation appears in many numerical model studies. Jiang and
Garwood (8) have computed the descent of a density current
on a uniformly sloping bottom into continuously stratified
ambient fluid. When the plume reaches its own density level
it turns and flows parallel to the isobaths as an essentially
laminar jet—i.e., no strong instability eddies occur, and there
is no boundary layer separation. This illustrates the fact that
the uniform bottom slope (relative to the ambient density
surfaces) greatly reduces the amplitude of instability waves,
such as occur in a free jet. In the latter case, numerical
calculations (9) have been made for the California Coastal
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Current at a time when it was relatively far from the conti-
nental slope, in which instance the initial unstable equilibrium
jet rapidly developed eddies that pinched off on either side.
Similar results for the Mediterranean Outflow Current, but
with topography removed, have been obtained (10). Unan-

swered, however, is the question of the mechanism for remov-
ing the current from the influence of the coastal topography
and for creating the unstable initial state. This question has
been addressed (11) by using a primitive three-dimensional
baroclinic model in a large computational domain, wherein the

A

B

C

FIG. 1. (A) Schematic diagram [courtesy of Jack CookyWoods Hole Oceanographic Institution (WHOI) Graphics] of the Mediterranean
outflow current along the Iberian continental slope [isobaths (in meters) dashed], and the intermittent detachment of ‘‘meddies’’ at a depth of '1
km. These relatively salty and warm eddies lie above denser water in the Atlantic Ocean. The XBT line of temperature measurements. (B) A vertical
cross section (courtesy of Amy BoweryWHOI) of salinity isolines (a) (looking into the stream) and corresponding density isolines (b), which
qualitatively indicate the high salinity (.36 parts per thousand) outflow and the gravitationally stable density field (increasing downwards). One
dbar 5 104 Pa. (C) Long time trajectories of neutral f loats (courtesy of Amy BoweryWHOI) placed in the high-salinity core (B). Some floats
occasionally detach from the main core and rotate clockwise in the anticyclonic meddies, while the remainder of the jet continues along the isobaths.
Eventually all of the high-salinity core is ‘‘detrained’’ and replaced by Atlantic water.
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irregularity of the California coastal topography produces a
(nonspatially periodic) baroclinic instability. The net result is
that some fluid separates from the main coastal current,
forming structures that extend to large offshore distances and
resemble the filaments and ‘‘squirts’’ observed in the surface
layer of the California Current. Haidvogel et al. (11) note,
however, that this effect is reduced or suppressed if the
variable topography is removed and replaced by a straight
vertical wall on the inshore side of an unstable laminar
boundary jet.

The foregoing studies suggest that the separation of inter-
mediate depth eddies from the Mediterranean outflow is due
to a local region of enhanced instability, resulting from some
prior influence of slope topography. But the intrinsic com-
plexity of the cited numerical models does not allow us to
identify that influence, and, to isolate it, we turn to the
following simpler analytical model.

Section 2. Description of the Model

Fig. 2 is a vertical section of a geostrophically balanced jet that
is confined to an intermediate density layer r2 lying between
two very deep density layers (r1 , r2, r3 . r2) whose velocity
is assumed to vanish everywhere. Thus part of the midlevel (r2)
jet is supported by the continental slope, and part is supported
by the pressure on the interface of the r3 layer. Far upstream
(x 5 2`) from Fig. 2 the laminar velocity of the jet is given
as a function of the cross-stream distance y; at some down-
stream position x the bottom slope r(x) starts to increase
gradually, thereby forcing cross-stream displacements in the r2
layer. These will be computed by using the inviscid, steady, and
shallow water (hydrostatic) equations in a rotating system with
constant Coriolis parameter f. Assuming that at y 5 `,
hyx [ 0, the resulting nonlinear equations will give, at any
x, the downstream velocity u(y) and the total layer thickness

h(y). Without loss of generality, the y 5 0 origin at any
downstream section (e.g., Fig. 2) is conveniently taken at the
inshore ‘‘front’’ of the r2 density layer where h(0) 5 0. For
physical reasons it is desirable to restrict the theory to the case
where u(0) [ u0 5 0 in the upstream (x 5 2`) state, but the
inviscid theory must allow for finite positive u0 further down-
stream. [It is anticipated that the inclusion of a thin viscous
layer at the front (y 5 0) will remove the unrealistic velocity
discontinuity across y 5 0.] However, steady solutions of the
longwave equations with negative u(0) in the downstream state
cannot be admitted, although such an upstream influence is
physically possible, and it would require a more general theory.

At any downstream x, or at any r(x), let y1 (Fig. 2) denote
the point where the lower interface intersects the slope; the far
upstream [r(2`)] values of y1 5 L, h(y1) 5 Hm, and u(y1) 5
Um are given. We want to compute the value of y1 2 L when
these parameters are such that the streamline originating at
y 5 L is deflected offshore (and on to the r3 interface) to y 5
y2 . y1.

Since h(x, `) is assumed constant, and since the longwave
theory implies the balance of Coriolis (fu) and the pressure
gradient force, the conservation of volume transport in y2(x) #
y , ` yields the important boundary condition h(y2) 5 Hm.
The Bernoulli invariant then gives u(y2) 5 Um as a second
boundary condition for all the fluid in y2 $ y $ y1 (at any x)
which originated on the slope at x 5 2`. On each such
streamline potential vorticity P is conserved, and, to close the
problem for this region in the simplest dynamically consistent
way, we will assume uniform upstream P in L . y . 0, and
therefore uniform P in y2(x) $ y $ 0. Since the total volume
transport Q in this interval is also independent of x, we will
obtain (Section 3) three (highly) nonlinear algebraic equations
for y1(x), u0(x), and h(y1(x)). But it is easier to solve these
equations by differentiating with respect to x (using dQydx 5
0), and then integrating by using a second-order Runge–Kutta
scheme to obtain y1, etc. as a function of r(x).

To quantify the foregoing considerations for the steady flow
in y2(x) . y1(x) . y . 0 we first note that the vanishing velocity
in the r1, r3 layers, and the longwave approximation give the
downstream geostrophic velocity in the r2 layer:

u 5 2
g*«

f
h
y

y2 . y . y1 [2.1]

u 5 2
g*
f

h
y

1
g*r

f
, y1 $ y $ 0 [2.2]

where

g* 5 gD1 D1 5 ~r2 2 r1!yr1 [2.3]

« 5 D2y~D2 1 D1! D2 5 ~r3 2 r2!yr2. [2.4]

In y2 . y . 0, the volume transport

Q 5 E
0

y2~x!

uh dy [2.5]

is independent of x, and the nondimensional longwave poten-
tial vorticity

P 5
f 2 uyy

h~y!

Hm

f
[2.6]

is uniform in (x, y). The aforementioned endpoint conditions
(for Eq. 2.6) are

h~y2! 5 Hm u~y2! 5 Um, [2.7a]

h~0! 5 0. [2.7b]

FIG. 2. An idealization (looking downstream) of Fig. 1B showing
a vertical section (Lower) of a jet with downstream velocity u(y)
(Upper) confined to an intermediate density layer r2; the velocity is
assumed to vanish in the overlying r1 layer and the underlying r3 layer.
A steady state with slowly varying downstream (not shown) bottom
slope [r(x)] forces corresponding offshore displacements of fluid
columns, as indicated by the shaded column (y2 . y . y1), which was
located over the bottom slope in the upstream region (x 5 2`, not
shown). The y 5 0 origin at any x-section is taken at the front where
the layer thickness h(y) vanishes. Although the corresponding velocity
u0 also vanishes in the assumed upstream state, the inviscid theory used
must allow u0 $ 0 at downstream x. See text.
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The given nondimensional parameters, in addition to «, are

s~x! ;
r~x!g*

f2L
s0 5

r~2`!g*
f2L

, [2.8a]

F2 ;
f2L2

g*Hm
q ;

Q
HmL2f

, [2.8b]

and the relevant dependent variables are

ŷ ; y1yL ĥ ;
g*h~y1!

f2L2 û0 5 u0yfL. [2.9]

In the upstream state, where s0 is the nondimensional slope,
the endpoint values of 2.9 are

ŷ 5 1 ĥ 5 1yF2, [2.10a]

û0 5 0 ~assumed!. [2.10b]

It is important to note that all of the following considerations
are independent of the detailed upstream structure of the jet
in y . L; although the boundary conditions 2.7a will be used
at y 5 y2, they are only consequences of integral properties of
the fluid in y $ y2, as has been pointed out.

Also note that Eq. 2.10b and the conservation of the
Bernoulli function on y 5 0 require that if u(0) increases
downstream, then the elevation of the free streamline relative
to a fixed datum level must decrease, and this requires a
deflection of slope water to greater depths. The central qualita-
tive question then is whether the slope required for this inviscid
effect must increase, as is tentatively assumed below. The neces-
sary calculations are simplest for the case (Section 3) of vanishing
potential vorticity Eq. 2.6, and the quantitative effect of finite P
is computed in Section 4. The implication for meddy formation as
a result of the predicted offshore deflection is discussed in Section
5, along with a suggestion for testing the conjecture.

Section 3. Vanishing Inshore Potential Vorticity (P 5 0)

In this case the solution of 2.6 is the linear velocity profile

u 5 fy 1 u0, y2 $ y $ 0, [3.1a]

where u0 is an unknown function of x, and the second boundary
condition in 2.7a then gives

Um 5 fy2 1 u0. [3.1b]

One equation relating the three unknowns [y1, u0, h(y1)],
obtained by integrating 2.2 using 3.1a, is

g*h~y1!

f
5

g*ry1

f
2

fy1
2

2
2 u0y1. [3.2]

A second equation is supplied by 2.5, the right-hand side of
which equals the sum of

E
y1

y2

uhdy 5
g*«

2f
@h2~y1! 2 Hm

2 #,

and

E
0

y1

uhdy 5 E
0

y1

dyS h
2fD d

dy
~fy 1 u0!

2

5
h~y1!~fy1 1 u0!

2

2f
1 F 1

2g* E
0

y1

~fy 1 u0!
3dy

2
r

2f E
0

y1

~fy 1 u0!
2dyG ,

where 3.1a and 2.2 have been used. Thus the given upstream
transport equals

Q 5
g*«

2f
@h2~y1! 2 Hm

2 # 1
h~y1!

2f
~fy1 1 u0!

2 1
1

8g*f
$~fy1

1 u0!
4 2 u0

4% 2
r

6f2 $~fy1 1 u0!
3 2 u0

3%. [3.3]

The third and final equation is obtained by using 3.1a in 2.1,
and by integrating from y1 to y2. The right-hand side of the
result is g*«f21[h(y1) 2 Hm], and the left-hand side is 1⁄2[Um
1 (fy1 1 u0)][y2 2 y1]. Since 3.1a, b implies f(y2 2 y1) 5 Um
2 (fy1 1 u0), we get

1
2«

@Um
2 2 ~u0 1 fy1!

2# 5 g*ry1 2
f2y1

2

2
2 u0y1f 2 g*Hm,

[3.4]

where 3.2 has been used.
By applying 2.8–2.9 and q [ Qy(HmL2f), the nondimen-

sional forms of Eqs. 3.2–3.4 become

ĥ 5 sŷ 2
ŷ2

2
2 û0ŷ [3.5]

1
2«

@1 2 ~û0 1 ŷ!2# 5 sŷ 2
ŷ2

2
2 û0ŷ 2

1
F2 [3.6]

q 5
«F2ĥ2

2
2

«

2F2 1
ĥF2

2
~ŷ 1 û0!

2 2
F2

8
$~ŷ 1 û0!

4 2 û0
4%

2
F2s
6

@~ŷ 1 û0!
3 2 û0

3#. [3.7]

From 2.10a, b it is seen that when 3.5 and 3.6 are evaluated far
upstream the result is

ĥ 5 s0 2 1⁄2 , [3.8a]

1
F2 5 s0 2 1⁄2 . [3.8b]

Note that 3.2 also holds at all y, so that in the upstream state
(u0 5 0), h(L2)yy 5 0 if g*r(2`)yf 2 fL 5 0, or if s0 5
1. The latter value therefore occurs when the bottom slope
equals the upper density slope of the interface (Fig. 2). Also
note that our P [ 0 model is highly constrained in the
parametric sense, since it only allows s0 . 1⁄2 (according to
3.8a). Moreover, very large values of s0 are not of interest
because they correspond (3.8b) to F 3 0 or L 3 0 (Eq. 2.8),
in which case the portion of the upstream jet lying over the
slope is already very small; the problem of interest occurs when
L is comparable to the radius of deformation (g*Hm)1y2yf, or
F 5 O(1).

As previously stated, the complicated algebraic equations
3.5–3.7 are best solved by first differentiating them with respect
to the downstream distance, or with respect to s (denoted by
a prime), and using dqyds 5 0:

ĥ9 1 ~ŷ 2 s 1 û0!ŷ9 1 ŷu90 5 ŷ [3.9]

@ŷ 2 s 1 û0 2 ~û0 1 ŷ!y«#ŷ9 1 @ŷ 2 ~û0 1 ŷ!y«#û90 5 ŷ [3.10]

@«ĥ 1 ~ŷ 1 û0!
2y2#ĥ9 1 @ĥ~ŷ0 1 û0! 1 ~ŷ 1 û0!

3y2#ŷ9

1 @ĥ~ŷ 1 û! 1 $ŷ 1 û0!
3 2 û0

3%y2 2 s$~ŷ 1 û0!
2 2 û0

2y2%û90

5 ~~ŷ 1 û0!
3 2 û0

3!y6, [3.11]

where ŷ9 5 dŷ1yds, etc.
Instructive results for ‘‘small’’ s 2 s0 are obtained by

linearizing about û0 5 0, ŷ 5 1, ĥ 5 1yF2 to get
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ĥ9 1 ~1 2 s0!ŷ9 1 û90 5 1

S1 2 s0 2
1
«
D ŷ9 1 S1 2

1
«
D û90 5 1

S« 1 F2

2 D ĥ9 1 F1 1
F2

2
2

F2s0

2 G ŷ9 1 F1 1
F2

2
2

F2s0

2 G û90

5
F2

6
.

The determinant of this system [s0F2(1 2 « 1 «s0)y2«] is
positive, since « , 1, and the explicit solution is

ŷ9 5

1
3

2
1

3«
2

s0

2
~1 2 « 1 «s0!y2«

, 0 [3.12]

û90 . 0. [3.13]

From this we conclude that if the slope increases downstream
(ds 5 s 2 s0 . 0) then dŷ 5 (y1 2 L)yL , 0 and the fluid
is deflected offshore; also dû0 . 0, verifying that a parcel on
the frontal (y 5 0) free streamline increases its downstream
speed. The quantitative result for « 5 1⁄2 and s0 5 1 is

ŷ9 5 25y6. [3.14]

For finite s 2 s0 we integrate 3.9–3.11 for a given («, s0),
starting from ŷ 5 1, û0 5 0, ĥ 5 s0 2 1⁄2 . Fig. 3 shows the
results for s0 5 1 (F2 5 2), s0 5 3⁄4 (F2 5 4), and various
« 5 (1⁄3 , 1⁄2 , 2⁄3). For s0 5 1, « 5 1⁄2 a 4-fold increase in the
downstream bottom slope causes 70% of the width of the
upstream slope current to be deflected into deep water, where
it is sandwiched between the passive r1 and r3 layers. A similar
fractional displacement occurs for « 5 1⁄2 , s0 5 0.75.

Section 4. Finite Potential Vorticity P

If P in Eq. 2.6 is a finite positive constant at all y2(x) $ y $
0, then the solutions for h(y) in each of the two regions (cf. Eqs.
2.1 and 2.2) are hyperbolic functions. These must be joined to
satisfy the continuity of u at the point y 5 y1 where the lower

density interface intersects the bottom (Fig. 1), and where
hyy is discontinuous. In solving 2.6 etc., the same nondi-
mensionalization is used as in Section 3 (see Eqs. 2.8 and 2.10),
and the subsequent procedure is similar to that used in
obtaining Eqs. 3.9–3.11. After considerable algebra the fol-
lowing system of nonlinear differential equations is obtained
for ŷ9 5 dŷyds, etc.:

a11ŷ9 1 a12Dŷ9 1 a13û90 5 2a14 [4.1]

a21ŷ9 1 a22Dŷ9 1 a23û90 5 2a24 [4.2]

a31ŷ9 1 a32Dŷ9 1 a33û90 5 2a34, [4.3]

where

Dŷ ; ~y2 2 y1!yL. [4.4]

The coefficients a11, . . . , a34 are nonlinear functions of ŷ, Dŷ,
û0, and are listed in the Appendix. In addition, these coeffi-
cients depend on the upstream parameters (F, s0, P), which are
not independent, but related by

1
F2 5

1 2 cosh P1y2

P
1

s0 sinh P1y2

P1y2 . [4.5]

The Runge–Kutta integration of these equations then pro-
ceeds from the upstream values of

ŷ 5 1, Dŷ 5 0, û0 5 0 [4.6]

to any downstream values of s.
The main result (Fig. 4) is similar to that obtained for the

much simpler case (P 5 0), except that the fractional offshore
displacement of the slope current is somewhat larger for finite
potential vorticity. For example, when P 5 1.6, F2 5 4, and «
5 0.5, the upstream state is given by s0 5 0.65, y1yL 5 1.0, and
û0 5 0. For a downstream s 5 2.6, we obtain y1yL 5 0.25, ŷ
5 0.49. Thus the width of the current in contact with the slope
is reduced to one-fourth of its upstream value, and considering
that ĥ(0) 5 0 we see that the cross-sectional area of the
downstream slope current is very small. It is expected that the
inclusion of (Ekman) frictional effects will reduce û0 toward
zero, causing almost all of the current at the downstream
section to lie above the deep r3 layer.

FIG. 3. The fractional width ŷ of the upstream current lying above
the continental slope that is deflected offshore (cf. Fig. 2) as a function
of nondimensional slope s 5 1⁄2 1 1yF2 when the potential vorticity
(P) vanishes. M1: F2 5 2, « 5 1⁄2 ; M2: F2 5 4, « 5 1⁄2 ; M3: F2 5
4, « 5 1⁄3 ; M4: F2 5 4, « 5 2⁄3.

FIG. 4. Same as Fig. 3 except for finite P and (F2 5 4, « 5 0.5).
Curves 1–7 are, respectively, P 5 0.1, P 5 0.2, P 5 0.4, P 5 0.8, P 5
1.6, P 5 3.2, and P 5 6.4.
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Section 5. Conclusion and Suggestion

A steady-state finite-amplitude theory has shown that a down-
stream increase in cross-stream topographic slope (equivalent
to gradually convergent isobaths) will deflect a midlevel
density current (Fig. 2) away from the continental slope and
onto the isopycnal surfaces in the deep ocean. Although
complete separation (y1yL 5 0) does not occur (Figs. 3 and 4),
the expected magnitude (y1yL . 1⁄4) of the effect is such that
the baroclinic jet is nearly free of the topographic constraint.
It is therefore suggested that a local baroclinic instability of our
steady-state solution will occur, amplifying the computed
offshore displacement and producing an eddy that eventually
detaches seaward of the remaining current on the slope.
Obviously, this time-dependent scenario for meddy formation
is beyond our present scope, but the speculation can be tested
by a numerical calculation starting with a completely laminar
undisturbed flow (like that in Fig. 2 but with uyx [ 0), and
then imposing a slowly varying downstream slope r. The
resulting forced offshore deflection should start out similar to
that given by the foregoing theory, except that the time-
dependent motions induced in the (bottom) r3 layer now
become important, and the baroclinic coupling with the mo-
tion in the r2 layer may amplify its offshore displacement,
causing an anticyclonic eddy in the r2 layer to pinch off from
the main current.

Appendix

Tabulation of the coefficients of Eqs. 4.1–4.3:

a11 5 ~1 1 a2!1y2A 1 a~«p!21y2B

a12 5 ~py«!1y2a~C 2 1yp! 1 ~1 1 a2!1y2«21~D 2 s!

a13 5 2~1 1 a2!1y2p21y2 sinh~p1y2ŷ! 2 a~«p!21y2 cosh~p1y2ŷ!

a14 5 2a13 2 a~«p!21y2

a21 5 a~py«!1y2A 1 ~1 1 a2!1y2«21B

a22 5 ~py«!~C 2 1yp!~1 1 a2!1y2 1 ~D 2 s!a~py«!1y2

a23 5 2a«21y2 sinh~p1y2ŷ! 2 ~1 1 a2!1y2«21 cosh~p1y2ŷ!

a24 5 a«21y2 sinh~p1y2ŷ! 1 ~1 1 a2!1y2«21 cosh~p1y2ŷ!

2 ~1 1 a2!1y2ye

a31 5 s@p21 2 p21 cosh~p1y2ŷ! 1 ~s 2 u0!p21y2 sinh~p1y2y!

2 C~1 2 «!A

a32 5 0

a33 5 2~syp!@cosh~p1y2ŷ! 2 1# 1 ~1 2 «!p21y2C sinh~p1y2ŷ!

a34 5 ŷyp 2 p23y2 sinh~p1y2ŷ! 1 ~2s 2 û0!p21@cosh~p1y2ŷ! 2 1#

2 ~1 2 «!p21y2C sinh~p1y2ŷ!

A 5 2p1y2 sinh~p1y2ŷ! 1 ~s 2 û0!cosh~p1y2ŷ!

B 5 2cosh~p1y2ŷ! 1 p1y2~s 2 u0!sinh~p1y2ŷ!

C 5 @1 2 cosh~p1y2ŷ!#yp 1 ~s 2 û0!p21y2 sinh~p1y2ŷ!

D 5 2p21y2 sinh~p1y2ŷ! 1 ~s 2 û0!cosh~p1y2ŷ!

a 5 sinh@~py«!1y2Dŷ#.
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